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ABSTRACT

In this paper, we introduce a new conversational speech task –
recognizing call -center speech – using data collected from
Dragon’s own technical support line. We compare performance
of models trained from conversational telephone speech (the
Switchboard corpus) and models trained from predominantly
read, microphone speech, and report on a series of experiments
focusing on adapting the microphone speech models to the
telephone channel and conversational task. We also discuss the
importance of task-specific language model data. We benchmark
our test set by comparing the performance of our 1998
Switchboard Evaluation system to that of our simpler call -center
system.

1. INTRODUCTION

In this paper we investigate what happens when we take models
trained for other tasks/domains and apply them to a new task for
which we have no transcribed data: recognition of telephone calls
to Dragon Systems’ technical support line.  The goal of the study
was not to produce a highly optimized multi -pass system as we
have for Switchboard evaluations [1], but rather to use existing
technology to produce a fast, deployable system, providing
transcripts in close to real time. This is in contrast to other tasks
such as the IBM Voice-Mail transcription task where the
recognition is done off- line by a multi -pass system [2, 3]. While
call -center speech is a “real” , goal-oriented task, unlike the more
artificial Switchboard task, we felt we could leverage our
experience with both Switchboard and the somewhat less
contrived CallHome in  order to recognize the call -center speech.

The target domain uses data collected from telephone
conversations between members of Dragon’s technical support
staff and customers using one of our products. The content of the
calls is fairly narrow, mainly focusing on questions concerning
the interactions between various software and/or hardware. The
technical support agent was recorded over a high-quality headset
while the customers’ speech was recorded from the telephone
line. This paper focuses on experiments done recognizing the
telephone speech of the customer. A customer test set was created
with 20 callers – 14 male and 6 female – totalling approximately
10,000 words, representing an hour of speech.

Since the recognition task has no transcribed training data, we
were forced to investigate the portability of models. Our
experiments used models trained on data from other domains,

where the primary focus was investigating how much we suffer
when we use models mismatched in speaking style and from
mismatched channels.

For the acoustic data, we compare performance obtained using
models trained from the Switchboard corpus of conversational
telephone speech and models trained on a corpus composed of an
assortment of high-quality microphone-speech data, including the
Wall Street Journal, selected Broadcast News, and in-house data.
We note the microphone-speech is primarily read speech.

For language modeling, we combined data from three corpora:
we used the Switchboard corpus to capture the conversational
nature of the calls, Broadcast News for more general English, and
e-mails to our technical support center for enriching the
vocabulary with Dragon product names and computer jargon.

In the sections that follow, we provide a description of our
models together with baseline recognition results in Section 2,
and we detail a series of adaptation experiments in Section 3. We
look into the role of the technical support e-mails as part of the
language model in Section 4, and in Section 5 we explore the
inherent diff iculty of the task/test set by comparing the
performance of our 1998 Switchboard evaluation system on this
test with that of our simpler call -center system.

2. BASELINE MODELS AND RESULTS

2.1 Acoustic models

We have built parallel sets of acoustic models from equal
amounts of data from the conversational Switchboard corpus and
the microphone-speech corpus described above. The latter was
downsampled to 8kHz in order to recognize telephone speech.
We were particularly interested in the amount of degradation we
would suffer using models trained from only downsampled
microphone data, where there is a mismatch not only in the
channel but in the speaking style as well .

We initially buil t two sets of acoustic models, one from 170 hours
of Switchboard data (SWB) and one from 170 hours of the
downsampled microphone-speech (HQMic).  Both models were
buil t using the same recipe: i.e. speaker-independent, (unwarped)
triphone models with the same phoneme set, same feature set,
same channel normalization and (after downsampling) same
signal processing. The general mixture models had the same



number of output distributions and the same bound on the number
of Gaussians per mixture model.

2.2 Lexicon and language model

We used three language models for this task: one trained from
nearly 3 milli on words of Switchboard training texts (SWB),
another from approximately 145 million words of Broadcast
News data (BN), and the third from ½ milli on words of the
technical support e-mails (TS). The language model used in the
experiments is a trigram language model, interpolated at the
probabili ty level from these three sources, according to the
formula:

Prob = 0.53 SWB + 0.24 BN + 0.23 TS .

We used a 50k-word vocabulary composed of ~28k words from
Switchboard, 500 new words from the tech support e-mails, and
the rest from Broadcast News. The test set has a 1% out-of-
vocabulary (OOV) rate with the TS component and 2% OOV rate
without the TS component. We discuss the OOV rate in Section
4, where we quantify the contribution of the technical support e-
mails.

2.3 Baseline results

To establish a baseline, we run a simple “call -center” system that
uses no adaptation, no warping, and only a single recognition
pass. All recognition uses the language model (LM) described
above and a fast decoding protocol, running between 1 and 2
times real-time on a PIII- 450.

As seen in Table 1, for speaker-independent recognition, we
began with a word error rate (WER) of 50.4% for the models
trained from Switchboard data and 56.9% for the models trained
from downsampled microphone-speech.  The 6.5% difference is
presumably due in large part to the channel mismatch and/or the
mismatch in speaking style.

In our experience with the conversational telephone tasks,
Switchboard and CallHome, the error rates are much lower using
models trained from the same 170 hours of Switchboard data as
the SWB models used here. We therefore wondered how much of
the degradation in performance on call -center data could be
explained by the compromises we made to our system and how
much could be attributed to the task/test set. We discuss this more
in Section 5.

Models WER (%)
HQMic 56.9
SWB 50.4

Table 1: Baseline word error rates for Customer Technical
Support Test Set.

3. ADAPTATION EXPERIMENTS

We were interested in techniques we could use to recover the loss
of performance we suffered when using the models trained from

read microphone data, particularly techniques involving
adaptation to the telephone channel. Given the lack of transcribed
training data we have for the target task, we were especially
interested in the performance difference between supervised and
unsupervised techniques. We were also interested in the quantity
of data (transcribed or not) required to see improvements from
our techniques.

We first exposed the microphone models (HQMic) to general
telephone speech by performing supervised Baum-Welch (BW)
adaptation to the 170 hours of Switchboard data. This brought the
WER for the HQMic models down to 51.3%, within a point of
the Switchboard-trained base model. This is not particularly
surprising since both the SWB models and the adapted HQMic
models have “seen” the full Switchboard acoustic training data
together with the correct transcripts. On the other hand, when we
adapt the HQMic models using unsupervised BW adaptation,
based on Switchboard transcripts obtained by a fast errorful
(~50% WER) recognition pass using SWB-trained models, we
see a WER of 55.4%.  This only amounts to a 1.5 point
improvement absolute.

We were interested to see if the limited amount of task-specific
technical support data we have could be used effectively to
sensitize the microphone-speech models to the telephone channel
in place of the Switchboard training data. Because of the limited
amount of available data, we used regression-based (MLLR-
style) adaptation [4, 5], rather than Baum-Welch. As adaptation
data, we used the test set itself, jack-knifing through the data,
leaving out the data for the speaker we were testing on so as to
adapt to the task rather than the individual speaker. Using
unsupervised adaptation, this resulted in a WER of 54.6%, which
is better than adapting (unsupervised BW) to the 170 hours of
Switchboard data and much cheaper. If we perform the jack-
knifing experiment in supervised fashion, we achieve a word
error rate of 52.7%. These results are summarized in Table 2. It is
worth noting that we performed the same experiment starting
from the Switchboard-trained models and observed no
improvements, reinforcing the idea that we are adapting the
microphone models to the channel and/or speaking style.

Adaptation data Supervised Unsupervised
170 hours

Switchboard
51.3 55.4

1 hour technical
support

52.7 54.6

Table 2:  Word error rates for adapting HQMic Models to
channel/task.

Since transcribing data is so expensive, we investigated how
much we gain performing supervised regression-based adaptation
as we increase the amount of transcribed data. These results are
summarized in Table 3.  For each experiment, we limited the
amount of data per speaker so that the sum over all speakers came
to the total minutes in the first column, and we used the same
jack-knifing technique as for the experiments above.  The models
used in the last row are the same models used in the last row of
Table 2. We first note that with as littl e as 10 minutes of
transcribed data we obtain a 54.3% WER, noticeably better than
adapting (unsupervised) to the 170 hours of Switchboard data. It
is also worth noting that we attain our “steady-state” performance



after 40 minutes of adaptation on transcribed data. For the
unsupervised experiments, the total improvement of 56.9% to
54.6% WER is achieved after exposing the models to 20 minutes
of speech.

Supervised Unsupervised
no adaptation 56.9 56.9
10 minutes 54.3 55.3
20 minutes 53.0 54.6
40 minutes 52.7 ---

1 hour 52.7 54.6

Table 3: Word error rates for adapting HQMic models to varying
amounts of task-specific technical support data.

We were curious to see whether gains from adapting to
channel/task would persist after adapting to the speaker.  We
adapted to the speaker by adapting to the recognizer’s output on
the test data and then re-recognizing. We performed this speaker
adaptation to 4 models: to the microphone models (HQMic), to
the models obtained by doing the jack-knifing experiments on the
1 hour of technical support data in both supervised and
unsupervised forms (JK-sup, JK-unsup), and to the Switchboard-
trained models (SWB). The first column of Table 4 gives the
baseline results for the models, as reported in Table 1 for HQMic
and SWB and in Table 2 for JK-unsup and JK-sup. The
remaining columns give word error rates if we only perform
speaker normalization (“warping”) [6, 7] but not adaptation, or if
we both warp and adapt to the speaker.

Model Baseline Warp at test Warp+adapt
to speaker

HQMic 56.9 56.1 53.6
JK unsup 54.6 54.3 52.1
JK sup 52.7 52.5 50.8
SWB 50.4 49.2 47.9

Table 4: Adapting to speaker: word error rates with no warp / no
adapt, warp only, and warp+adapt.

Comparing the baseline results for HQMic and JK-sup, we see a
4.2 point gain from adapting to the channel, assuming transcripts
are available. After adapting to the speaker, we stil l see a 2.8
point improvement. The 50.8% WER for the JK-sup models is
almost as good as the baseline results for the SWB-trained
models.  However after adapting the SWB-trained models to the
speaker, they out-perform the speaker-adapted JK-sup models. It
is worth remarking generally, that – although the size of the
differences may narrow – within each column and row, strict
ordering of the word error rates is preserved. Comparing the
baseline results to the adapted results for HQMic and JK-unsup,
we found that adapting to the channel without using the
transcriptions was still beneficial even after adapting to the
speaker. We note that neither of the channel-adapted models
benefit from warping as much as we would expect.

4. LANGUAGE MODEL EXPERIMENTS

As described in Section 2.2, for this task we used three language
models interpolated at the probabil ity level. As seen in Table 5,
without the technical support component of the language model,
the performance is much worse, even though the OOV rate is stil l
fairly low. The impact of the technical support data on the OOV
rate may be deceptively small because of choices we made in text
normalization and tokenization, i.e. in defining what constitutes a
word.  For example, the test set has many computer-specific
multi -word phrases and numerous number/letter combinations
which we retained as separate words rather than forming task-
specific compounds. These phrases are often composed of fairly
common words, such as “c colon backslash” , “3 point O”, “ two
sixty six” , “windows ninety five”, and “ rich text format” .  A
significant contribution of the TS component may therefore be in
learning new ways to connect these common words, a hypothesis
supported by the last row of Table 5, where we add in the
technical support data, but only with unigram counts, without
higher-order n-grams. This improves performance over the pure
SWB+BN system, but we gain as much again by adding in the
trigrams, most likely due to the structure of the multi -word
computer jargon.  We used the SWB acoustic models for these
experiments.

Language model WER OOV
SWB + BN + TS

(trigrams)
50.4 1 %

SWB + BN
(no tech support LM)

56.9 2 %

SWB + BN + TS(1)
(unigrams for TS )

53.9 1 %

Table 5.  Word error rates and OOV rates using language models
with TS component, without TS, and with only  TS-unigrams.

5. BENCHMARKING THE TASK

As mentioned in Section 2.3 when discussing the baseline results,
the 50.4% word error rate for the models trained from
Switchboard data (SWB) was higher than we expected. In order
to determine how much of the error could be attributed to the
task/test and how much was due to the compromises we made to
our system, we ran this test set through the 1998 version of our
Switchboard system (eval’98) used in NIST’s Hub 5 evaluations.
All tests used the same SWB+BN+TS language model.

In Table 6 we see that if we use our eval’98 system on the
customer test set, the error rate can be brought down to 37.7%.
Though somewhat worse than typical Switchboard evaluation
results, this is in line with results we have seen, for example, on
the English CallHome task.

The eval’98 system uses a multi -pass protocol.  It uses models
trained from warped data and uses warping to test speakers (but
no adaptation) in the first pass. Subsequent passes adapt to the
speaker. In Table 7 we show the comparable results for the call -
center SWB system. To make the fairest comparison, the results



in Table 7 are taken from the last row of Table 4, where we
warped at test time and then adapted to the speaker by adapting to
test recognition and re-recognizing, as described in Section 3.

First pass (warp only) 41.9
Final Pass (adapt) 37.7

Table 6. Word error rates for 1998 Switchboard Eval System on
Customer test set.

SWB (warp only) 49.2
SWB (adapt) 47.9

Table 7. Word error rates for SWB models used for call -center
system.

In the initial pass, the eval’98 system has a 41.9% WER,
compared to the SWB models’ 49.2%, a gap of more than 7
points.  By the final pass, the gap widens to 10.2 points.

The differences between the two experiments that were largely
responsible for the performance difference in the initial pass are
that the eval’98 system uses warped training data, has larger
acoustic models (including more state models and more nodes per
phoneme), and uses channel normalization by conversation side
(rather than by utterance). The eval’98 system also uses a
different phoneme set and different signal-processing parameters,
although we have verified that the different phoneme set does not
significantly affect performance. We expect that the differences
in signal-processing features is a small benefit for the eval’98
system, but a relatively minor one compared to the differences
already cited.  In the final pass, the eval’98 system profits from a
more elaborate multi -pass adaptation protocol. It also uses looser
thresholds, running at roughly 20 times real-time compared to the
nearly real-time call -center system.

6. FUTURE WORK

This task has provided us with valuable insights into the creation
of deployable “real world” recognition systems. We plan on
doing further experiments to pinpoint the performance
differences between our optimized eval’98 system and the
simpler call -center system. The goal is to narrow the gap between
the two systems while working toward fast on-line transcriptions
for the call -center system. We also plan more channel/task
adaptation experiments where we compare short regression-based
adaptation using Switchboard data to the jack-knifing experiment
done with the technical support data. We are also interested in
exploring the relationship between WER and the success of the
calls and/or the emotionali ty of the speaker. Finally, while this
paper focused on the telephone speech of the customer’s side of
the calls, we also have the opportunity to investigate the
conversational speech of the technical support agents, who were
recorded over high-quality microphones, and plan a series of
experiments studying speaking style and channel mismatch
conditions for the agent.
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